DX(デジタルトランスフォーメーション)におけるAiの役割とは

「DX(デジタルトランスフォーメーション)」という言葉をご存知でしょうか。

近ごろ、ニュースや新聞などでよく耳にするようになったこの「DX」という言葉ですが、その内容や具体的な活用方法などについては、知られていない部分も多いもの。

今回は、DXとAiにおける関係性や具体的な導入事例などに焦点を当てて、わかりやすく解説を行っていきます。

DX(デジタルトランスフォーメーション)とは?

そもそもDXとは、2004年にウメオ大学(スウェーデン)のエリック・ストルターマン教授によって提唱された概念。「テクノロジーの浸透によってもたらされる人々の生活様式の変化や利便性の向上」などを表す言葉です。

組織や企業によってその捉え方はさまざまですが、一般的には、「ヒトや企業が抱えている課題を、ITやAiなどのテクノロジーの力を用いて解決させる」という考え方全般と捉えて良いでしょう。

DX(デジタルトランスフォーメーション)について

たとえば、昨今の新型コロナウイルスの感染拡大にともない、多くの企業ではテレワーク(在宅勤務)への移行が推奨されるようになりました。業種や職種によっても異なりますが、オンライン会議やビジネスチャットなどのデジタルツールの活用によって、満員電車に乗らなくても仕事を進めることができる場合もあるのです。。

DX(デジタルトランスフォーメーション)が注目されている理由

近年、さまざまな業界分野では、DXへの取り組みが急速に進められていますが、その要因の一つとしては「Ai技術の発達」によるところが大きいと言えるでしょう。

これまでの精度の低いAi技術においては、業務利用を行う際にも局所的な機械作業にしか活用が期待できませんでしたが、昨今では、Aiの高精度化と「ディープラーニング(深層学習)」の活用によって、よりさまざまな可能性が模索されるようになりました。

【Aiとディープランニングの関係性】深層学習について知っておくべき3つのこと

ディープラーニングの技術を応用することで、膨大な顧客情報などのビッグデータの分析から新たなサービス開発を行うことができたり、カメラに搭載することで、画像認識や人間の表情分析なども行うことができます。

DX(デジタルトランスフォーメーション)の事例について

「OYO LIFE」の事例

インド発のホテルベンチャー「OYO(オヨ)」が提供する「OYO LIFE(オヨライフ)」は、「ホテルのように部屋を選ぶだけ」というコンセプトのもと、開発が進められた次世代の賃貸不動産サービスです。

通常の賃貸契約においては、入居にかかる初期費用(敷金・礼金・仲介手数料など)の発生や、各種ライフライン(電気・水道・ガス・Wi-Fiなど)の手続き、大型家具や家電の搬送など、煩雑な作業が多く、引っ越しそのものへのハードル上昇の主要因となっていました。

オヨライフでは、入居にかかる初期費用は清掃費(おおむね1万円前後)のみで、敷金や礼金などの高額な初期費用は一切ありません。

また、電気や水道などのライフラインに加えて、家具や家電などの生活必需品も入居当日から備わっているため、まさにホテルを選ぶような感覚で手軽に物件を契約することができます。

契約自体もスマホ一つで完結するため、たとえば、半年間や1年間など、あらかじめ具体的な滞在期間が決まっているホームステイや単身赴任などの場合には、より柔軟で幅広い賃貸契約が可能になります。

「Amazon GO」の事例

アメリカの大手通販サイト「Amazon(アマゾン)」が運営する「Amazon Go(アマゾン・ゴー)」も、近年のDXによる成功事例の一つと言えるでしょう。

アマゾン・ゴーでは、店内に設置された無数のAiカメラが、カゴに入れられた商品情報の自動分析を行います。

顧客は退店ゲートを通るだけで決済を完結させることができるため、買い物におけるレジの待ち時間を解消させることに成功しました。

「ZOZOSUIT」の事例

日本企業の事例として、ファッション通販サイト「ZOZOTOWN(ゾゾタウン)」の「ZOZOSUIT(ゾゾスーツ)」をご紹介しましょう。

自らの身長や胴回りなどの計測を行わなくても、ゾゾスーツを着用するだけで自分の身体的な特徴が自動的に計測されます。

商品の購入時には、スーツで計測した情報をもとに、身体のサイズに合った洋服を自動的にソートしてくれるため、サイズやイメージの違いから商品を返品するといった失敗も減らすことができるでしょう。

DX(デジタルトランスフォーメーション)とAiの関係とは

DXへの注目が高まると同時に、企業が保有している「データの価値」というものが再認識されるようになりましたが、DXにおけるデジタルマーケティングを考えるうえで重要なことは、これらのビッグデータをどのようにビジネス活用していくかということです。

ビッグデータとは?ビジネスへの活用例をご紹介

顧客の情報や購入までにいたる行動経過などの情報を収集できたとしても、それをビジネスの場面で活用できなければ意味がありません。

Aiはこうしたビッグデータを瞬時に分析・学習することを得意分野としているため、人間だけでは知り得なかったデータの特徴やユーザーの消費傾向などの有益な情報を入手することができます。

また、それらビッグデータの情報分析を通して、新しいサービスの開発を行ったり、より効果的なアプローチが可能になったりと、DXにおけるAi活用の効果は非常に大きいものであると言えるでしょう。

Aiの導入につながるDX(デジタルトランスフォーメーション)

お伝えしてきた通り、Aiを活用したビッグデータの分析は、今後ますます重要なものとなっていくでしょう。

Aiを活用することによって、たとえば、企画段階においては、外部の市場分析とともに内部の状況をリアルタイムに把握することで、ユーザの課題を把握し、新たな機能やサービスの開発につなげることができます。営業であれば、クライアントに合ったデータを瞬時に提示できることで商談の成約率も大きく向上するでしょう。

近年、スマートフォンやデジタルデバイスの普及にともない、商品やサービス全体がデジタル化の傾向を見せ始めるなか、Aiを活用したマーケティングフローの「複雑化」と「高速化」に対応していくことが重要です。

まとめ

企業やデジタルマーケティングにおけるデータの存在は、ときには「石油」とも換言されるほど重要なものである一方、「データの活用=Ai」 という認識だけが先行している傾向もあり、「データを活用しない」か「Aiを活用する」かの二極的な考えが多いこともまた事実です。

大切なのは「Aiを活用する」ことそのものではなく、顧客に関するデータをより効率的に取得できるような「サービスの設計」と、取得したデータをリアルタイムに分析し、ビジネスに反映できる「開発サイクル」です。

Aiの活用そのものが目的化してしまわないよう、まずは現状の課題をしっかりと把握し、その課題の解決には本当にAiの導入が必要なのか、必要であればどの工程にAiを活用するかなど、現状を客観的に判断することが効果的なDX施策への近道となるでしょう。