ディープラーニングとは一体何?ディープラーニングの基礎知識を解説!

近年ニュースやバラエティ番組などの話題として取り上げられる機会が多くなった『Ai(人工知能)』ですが、それとともに『ディープラーニング』という言葉も耳にすることが増えたという方も多いのではないでしょうか。

Aiは人間のように動くことができるシステムだとぼんやりわかっていても、実際にAiが人間のように動くにはどのような技術が必要で、そしてそもそもディープラーニングは何なのかという点についてはよくわからないという方がほとんどであると思います。

そこで本記事では『ディープラーニング』について詳しく基礎知識を解説いたしますのでディープラーニングという用語を理解すると同時にAiについての理解も同時に深めていってみてください。

ディープラーニングとは

ディープラーニングとは直訳すると『深層学習』を示すもので、人間が手を加えなくてもコンピュータが自動的に大量のデータからそのデータの特徴を発見する技術のことです。

例えば、耳の長いウサギのデータをAiに学習させ、Aiに『耳の長い動物はウサギだ』と覚えこませてしまうと、いざ耳が短いウサギや、耳が垂れているウサギなどを認識させた場合、Aiは『これはウサギではない』と思ってしまうのです。

耳が短くても垂れていてもウサギであることには変わりませんので、これまでのAiでは通常の学習方法ですとこうしたエラーが発生しており、あまり普及してこなかったのが現実でした。しかし、近年になって、ディープラーニングの技術が登場したことで、いわゆるたくさんの情報をAiが自動的に学習し、数百種類のパターンを学習することで、どのような場合でも正確に『ウサギ』であると答えられるようになったということです。

ディープラーニング技術がAiの再熱のきっかけになったといっても過言ではありません。

ディープラーニングとAiは違う?

では、Aiとディープラーニングが分けられている理由、そしてAiとディープラーニングは何が違うのかという点んについてです。

AiとはArtificial Intelligenceの略で人工知能という意味を持ち、定義については確定したものがないですが多くのばあい人の知的な振る舞いを模倣したコンピューターと認識されています。

一方ディープラーニングとはAiの学習方法の中の1技術であるといえ、Aiが人工知能全体を表すものであるとすれば、ディープラーニングはAiがより正確な情報を導き出すための技術であると説明すればわかりやすいでしょう。

ディープラーニングの仕組み

ではディープラーニングはどういった仕組みなのかという点ですが、ディープラーニングは、人間の脳神経の構造を模倣した『ニューラルネットワーク』をベースにしています。

ニューラルネットワークとは?Ai(人工知能)入門者向け基礎知識

ニューラルネットワークについての詳しい解説は上記の記事にて行っておりますのでここでは割愛いたします。

ディープラーニングは長い間解決されていなかった単純な情報しか処理、表現できないという問題を解決するため、多層(ディープ)化するといった工夫がなされたものです。

仕組みとしては、一つの問題に対して多角的な層からアプローチし、学習をするといったイメージで、ディープラーニングは学習の層を増やし複雑さに対応したおかげで分析精度が飛躍的に上がったのが特徴になります。

ディープラーニングを利用したAiの例としては、

『画像認識』や『音声認識』、『自然言語処理』等でディープラーニングでビッグデータを処理することでよりAiシステムに信頼性や正確性が出るとされています。

これら3つの技術については下記の記事でも詳しく解説しておりますのでご覧ください。

Aiでできること、できないことまとめ

ディープラーニングの4つの手法

そんなディープラーニングは4種類の手法に分けることができます。

①ディープニューラルネットワーク
②畳み込みネットワーク
③再起型ニューラルネットワーク
④オートエンコーダ

①ディープニューラルネットワーク

ディープニューラルネットワークとは、ニューラルネットワーク内の層が多層(ディープ)化されている仕組みになっています。ディープラーニング・ネットワークでは、各ノード層は、前の層から受けた出力を基にして新しく別の特徴一式でトレーニングします。ニューラルネットワーク内を進めば進むほど、ノードはさらに複雑な特徴を認識できるようになります。

②畳み込みネットワーク

また、畳み込みニューラルネットワークとは順伝播型人工ディープニューラルネットワークの一種です。尤も、この畳み込みという名前の由来二項演算という計算の一方法の名前から来ています。畳み込みニューラルネットワークは、従来のニューラルネットワークに新しい種類の層を導入し、異なる位置や大きさ、視点に対応する能力を向上させるように拡張されています。

さらにネットワークは、数十から数百のより深い層を持つようになり、画像や音声、ゲームの盤面やその他の空間的なデータ構造の階層的なモデルを作ることができるようになりました。

③再起型ニューラルネットワーク

再起型ニューラルネットワークとは、時系列の情報に適した手法です。Aiにおいて学習データを蓄積するには過去のデータももちろん侮れません。再起型ニューラルネットワークでは過去と将来のデータの重要度をバランスよく保てるような仕組みを兼ね備えており、今の時点では関係はないが、将来のある時点では関係があるような情報までしっかりと把握できるというのが特徴です。

④オートエンコーダ

最後、オートエンコーダとはニューラルネットワークのうちの一つの手法で、入力されたデータに次元削減の処理をして、特徴抽出するるものです。

つまりオートエンコーダは情報量を小さくした特徴表現を獲得するためにあり、小さくなっていた情報のなかにも特徴をつかむための重要な要素があるかもしれないわけで、その情報を圧縮していく過程をエンコーダと呼び、復元する過程をデコーダと呼びます。エンコーダは入力を低次元に表現することができ、デコーダは低次元から復元する能力を持ちます。

まとめ

本記事ではディープラーニングの基礎知識として、仕組みや手法などについて解説いたしました。Ai自体は1980年代から登場していた技術ですが、いまいち大量に学習することができなかったり学習データを処理する能力が弱かったりと正確な情報や思ったような情報が得られず、話題に上ったのも一瞬のうちで何度も忘れられてきました。

Aiが登場したのはつい最近だと勘違いしてしまっている方も多いでしょう。

しかし今回Aiが再度ブームとして注目されているのは『ディープラーニング』技術でもって、Ai本来の力がさらに発揮されると期待されているからです。

Aiチョイスのコラムではディープラーニングを活用したAiシステムの事例等を多数ご紹介しておりますので他コラムもぜひご覧ください。